"Heyuan Liji" is a joint venture between Heyuan Biotechnology (stock code: 688238) and Liji Biotechnology, specializing in the "Liji Biotechnology" and "Life-ilab" reagent brands

Language:

中文 English
Eukaryotic transcriptome sequencing

Original link:Metaorganisms - Eukaryotic Transcriptome Sequencing

brief introduction

Transcriptome broadly refers to all transcripts of a specific cell in a certain functional state, including mRNA and non coding RNA (ncRNA). It is an inevitable link between genomic genetic information and biological functions. Transcriptome sequencing in eukaryotes is based on high-throughput sequencing, which can quickly obtain a collection of all transcripts of a specific cell or tissue in a certain state of a species, used for studying gene structure and function, variable splicing, and predicting new transcripts.ranscriptome research can study gene function and structure at the overall level, and has become a priority research method to reveal the mechanisms of biological growth and development regulation and adaptation to stress, biological evolution laws, important mechanisms of disease occurrence and development, and discover key targets of pathogenic gene regulation. Currently, it has been widely applied in various fields such as basic research, clinical diagnosis and drug development, animal and plant breeding, etc.

characteristic
Ability to handle complex samples

Rich experience in library construction, incorporating library homogenization technology

Assist clients in quickly and accurately conducting bioinformatics analysis

Can flexibly customize information analysis based on customer needs

Initial sample size and sample delivery recommendations

Sample type

initiation mass

Animal and clinical organ tissues/brain tissues, etc

>20mg

Animal and clinical skin/bone/blood vessels/adipose tissue, etc

>100mg

Plant leaf tissue/flowers

>200mg

Plant roots/stems/fruits/seeds

>500mg

Primary cells/cell lines

>5 x 106 pieces

Neutrophils/eosinophils/basophils

>5 x 107 pieces

Total RNA

>1 μ g and RIN>7.0

matters needing attention:

① It is recommended to store the tissue samples in relevant tissue preservation solutions such as RNAlate, RNAOld, RNAProtect, etc., and then store them at -80 ℃ or send them on dry ice;

② After sufficient lysis using TRIzol or other lysis solutions, the cell samples are stored at -80 ℃ or sent on dry ice

③ For more detailed sample preparation guidelines, please contact online customer service

Bioinformatics analysis process and content

Referenced transcriptome

Analysis content

remarks

Sequencing data quality control

Remove connector sequences, contaminated sequences, and low-quality error sequences from the original offline data


Data volume statistics and quality evaluation


Sequence alignment and transcript reconstruction

Reference genome alignment

Compare the proportion of offline data to the upper genome

Distribution of reference genome alignment regions

Statistical comparison of the proportion of exons and introns in the genome sequence

Reference sequence chromosome density distribution

Statistical distribution of alignment sequences on chromosomes

Transcriptome reconstruction

Contains sequence merged. fa and. gtf files

Gene/transcript overall expression analysis

Gene expression summary table


Transcript expression summary table


Box plot of gene and transcript expression distribution


Statistical distribution of gene and transcript expression intervals


Transcript coverage depth statistics


Distribution density map of gene and transcript expression levels


Differential expression gene/transcriptome analysis (sample size ≥ 2)

Differential expression genes and transcripts statistical bar chart


Differential expression genes and transcriptome expression profiles


Differential expression genes and transcriptome volcano map


Cluster heatmap of differentially expressed genes and transcripts


GO enrichment analysis of differentially expressed genes

Including GO enrichment bar charts, scatter plots, radar charts, etc

Enrichment analysis of differentially expressed genes KEGG

Including KEGG pathway enrichment scatter plots, pathway maps, radar maps, etc

Enrichment analysis of differentially expressed genes Reactome (including only 19 common species)

Including Reactome enrichment scatter plots, bar charts, etc

Enrichment analysis of differentially expressed genes DO (disease annotation database) (including only human species)

Including scatter plots, bar charts, etc. for DO database enrichment

structural analysis

Variable splicing analysis

By default, ASprofile variable shear analysis results are provided, and rMATS differential variable shear analysis results can be provided for free after sales

SNP/InDel analysis


Sample correlation (sample size ≥ 2)

Correlation coefficient chart and PCA (principal component analysis) chart



Application scenarios and cases

Application Scenario 1:Differential gene screening and functional analysis

Applicable scope:Any direction including clinical medicine, basic medicine, biochemistry, animal and plant and fungal research

By using eukaryotic transcriptome sequencing, differentially expressed genes can be screened by comparing the gene expression levels between the experimental group and the control group. Then, further locking of differentially expressed genes is carried out, such as GO, KEGG enrichment analysis and GSEA analysis, combined with published literature in Pubmed and some star molecules accumulated in the research group to annotate the functions of differentially expressed genes, and further analyze the functional genes of interest. After entering the experimental validation stage, qPCR, Northern, Western Blot, FISH validation, gene knockout, and overexpression can be performed on the screened differentially expressed genes.

Application Scenario 2:Time series analysis or concentration gradient analysis

Applicable scope:Clinical samples, cell samples, animal and plant samples with multiple time periods, or samples treated with different drug concentrations

In the process of transcriptome data analysis, there is a special type of experimental design. Collect experimental samples from different time periods or test samples with different concentration gradients of drugs, reagents, etc. Subsequently, studying the expression patterns of different genes at different time periods or concentration gradients is commonly referred to as "time series analysis"

Application Scenario 3:Discovery of upstream regulatory genes such as transcription factors/regulatory factors/splicing factors

Applicable scope:Any research direction including clinical medicine, basic medicine, biochemistry, animal and plant research, etc

Conventional transcriptome differential analysis is highly likely to yield a large number of differentially expressed genes, which poses a challenge for target localization in later experimental validation. Transcription factors are a great entry point without specific pathways of interest or star molecules. Transcription factors can regulate genomic DNA openness, recruit RNA polymerase for transcription processes, recruit cofactors to regulate specific transcription stages, and regulate various life processes such as immune response and developmental patterns. Therefore, analyzing the expression and regulatory activity of transcription factors is of great significance for deciphering complex life activities. Other regulatory factors, including variable splicing and other regulatory genes, can also participate in upstream regulation.

Application scenario 4: Large sample research
Applicable scope:Animal and plant breeding, genetic populations and species origins, population cohorts and biomarker mining

With the rapid development of sequencing technology, transcriptome sequencing studies with a small number of samples are no longer able to explain complex biological problems. Researchers have begun to use large sample sizes of transcriptome samples, combined with statistical and machine learning methods, to identify core genes that conform to specific patterns and research objectives. Using methods such as Mendelian randomization, correlation analysis, linear regression, LASSO regression, Cox regression, etc., to analyze gene or genomic diversity in different samples and explore deeper and more comprehensive biological significance.

Project Process

Transcriptome sequencing with eukaryotic involvement in metaorganisms can provide researchers with a complete range of service processes, including sample extraction, library sequencing, and data analysis, providing high-quality data results and providing strong reference for subsequent researchAt the same time, the cloud analysis of metabiotic transcriptome has been fully upgraded, providing customers with a variety of analysis content to meet the standard and personalized analysis needs of researchers.

Contact Information

Landline Phone Number:021-50778506 
Service Manager:18616108315

Address:4th Floor, Building 27, Lane 908, Ziping Road, Pudong New Area International Medical Park, Shanghai

E-mail:lsj0027@obiosh.com

Copyright (C) 2015-2025 Heyuan Liji (Shanghai) Biotechnology Co., Ltd. All Rights Reserved

沪ICP备16001244号-1

Tel

18616108315

WeChat

QQ

Apply

Top